Physical interaction between components of DNA mismatch repair and nucleotide excision repair.
نویسندگان
چکیده
Nucleotide excision repair (NER) and DNA mismatch repair are required for some common processes although the biochemical basis for this requirement is unknown. Saccharomyces cerevisiae RAD14 was identified in a two-hybrid screen using MSH2 as "bait," and pairwise interactions between MSH2 and RAD1, RAD2, RAD3, RAD10, RAD14, and RAD25 subsequently were demonstrated by two-hybrid analysis. MSH2 coimmunoprecipitated specifically with epitope-tagged versions of RAD2, RAD10, RAD14, and RAD25. MSH2 and RAD10 were found to interact in msh3 msh6 and mlh1 pms1 double mutants, suggesting a direct interaction with MSH2. Mutations in MSH2 increased the UV sensitivity of NER-deficient yeast strains, and msh2 mutations were epistatic to the mutator phenotype observed in NER-deficient strains. These data suggest that MSH2 and possibly other components of DNA mismatch repair exist in a complex with NER proteins, providing a biochemical and genetical basis for these proteins to function in common processes.
منابع مشابه
Dna Repair
1. DNA Damage 1.1. Spontaneous Alterations of DNA (by Mutator Genes) 1.2. Environmental Damage to DNA 2. DNA Repair by Reversal of Damage Without Excision 2.1. Photoreactivation 2.2. Repair of O-Alkylguanine and Alkylthymine Without DNA trand Excision 3. Base Excision Repair in Non-Mammalian Cells 3.1. DNA Glycosylase in Non-Mammalian Cells 4. Base Excision Repair in Mammalian Cells 4.1. DNA Gl...
متن کاملDNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment
Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxi...
متن کاملBiochemistry and genetics of eukaryotic mismatch repair.
The process of mismatch repair was first postulated to explain the results of experiments on genetic recombination and bacterial mutagenesis. Mismatch repair has long been known to play a major role in two cellular processes: (1) the repair of errors made during DNA replication or as the result of some types of chemical damage to DNA and DNA precursors; and (2) the processing of recombination i...
متن کاملhMutSbeta is required for the recognition and uncoupling of psoralen interstrand cross-links in vitro.
The removal of interstrand cross-links (ICLs) from DNA in higher eucaryotes is not well understood. Here, we show that processing of psoralen ICLs in mammalian cell extracts is dependent upon the mismatch repair complex hMutSbeta but is not dependent upon the hMutSalpha complex or hMlh1. The processing of psoralen ICLs is also dependent upon the nucleotide excision repair proteins Ercc1 and Xpf...
متن کاملntextual” Synthetic Lethality and/or Loss of erozygosity: Tumor Hypoxia and ification of DNA Repair
wnloade oxia exists in every solid tumor and is associated with poor prognosis because of both local and ic therapeutic resistance. Recent studies have focused on the interaction between tumor cell genetd the dynamic state of oxygenation and metabolism. Hypoxia generates aggressive tumor cell phees in part owing to ongoing genetic instability and a “mutator” phenotype. The latter may be due to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 24 شماره
صفحات -
تاریخ انتشار 1998